Wednesday, July 24, 2019

High School Math Solutions - Series Convergence Calculator, p-Series Test

Last blog post, we discussed what an infinite series is and how to determine if an infinite series converges using the geometric series test. In this blog post, we will discuss how to determine if an infinite series converges using the p-series test.

A p-series is a series of the form∑_{n=1}^∞\frac{1}{n^p} , where p is a constant power.

Here is an example of a p-series:

1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+ ...=\frac{1}{1^2} +\frac{1}{2^2} +\frac{1}{3^2} +\frac{1}{4^2} + ...=∑_{n=1}^∞\frac{1}{n^2}

So, how do we determine if the sum of a p-series converges to a finite number or diverges to an infinite number? We use the p-series test!

The following is the p-series test:

If the series is of the form ∑_{n=1}^∞\frac{1}{n^p}   , where p>0, then
If p>1, then the series converges.
If 0≤p<1, then the series diverges.

Unlike the geometric test, we are only able to determine whether the series diverges or converges and not what the series converges to, if it converges.

The p-series test is fairly simple, useful, and easy to remember.

Let’s see some examples of how to use it.

First example (click here):

                                                          ∑_{n=1}^∞\frac{1}{\sqrt{n}}
1. Determine the value of p

                                                ∑_{n=1}^∞\frac{1}{\sqrt{n}}= ∑_{n=1}^∞\frac{1}{n^{\frac{1}{2}}}

                                                                 p=  \frac{1}{2}

2. Determine whether the series converges or diverges

                              Since p=  \frac{1}{2} and therefore 0≤p<1, the series diverges.

Next example (click here):

                                                              ∑_{n=1}^∞\frac{n^2}{n^6}

1. Determine the value of p

                                     ∑_{n=1}^∞\frac{n^2}{n^6}   = ∑_{n=1}^∞\frac{1}{n^{6-2}} = ∑_{n=1}^∞\frac{1}{n^4}

                                                                    p=4

       In this step, I used the following exponent rule: \frac{x^a}{x^b} =\frac{1}{x^{b-a}}

2. Determine whether the series converges or diverges

                                      Since p=4 and therefore p>1, the series converges.

Last example (click here):

                                              ∑_{n=1}^∞\frac{cos^2(n)+sin^2(n)}{n^2}

1. Determine the value of p

                                    ∑_{n=1}^∞\frac{cos^2(n)+sin^2(n)}{n^2} = ∑_{n=1}^∞\frac{1}{n^2}

                                                                   p=2

In this step, I used the following trigonometric identity: sin^2(x)+cos^2(x)=1

2. Determine whether the series converges or diverges

                                  Since p=4 and therefore p>1, the series converges.

The p-series test is pretty straightforward, helpful, and not too difficult. For more help or practice on the p-series test, check out Symbolab’s Practice. Next blog post, I’ll go over the convergence test for alternating series.

Until next time,

Leah

Monday, May 13, 2019

Advanced Math Solutions - Series Convergence Calculator, Geometric Series

Series are an important part of Calculus. In this next series of blog posts, I will be discussing infinite series and how to determine if they converge or diverge.

For a refresher:

A series is the sum of a list of terms that are generated with a pattern. A series is denoted with a summation symbol. An infinite series is a series that has an infinite number of terms being added together.

Here is an example of an infinite series:


With infinite series, it can be hard to determine if the series converges or diverges. Luckily, there are convergence tests to help us determine this!

In this blog post, I will go over the convergence test for geometric series, a type of infinite series.

A geometric series is a series that has a constant ratio between successive terms. A visualization of this will help you better understand.

Here’s a geometric series:


In this series, each following term is the product of the prior term and ⅓.

We can rewrite this geometric series using the summation notation.


In order to determine if a geometric series diverges or converges, you’ll need to follow and remember the following test/rule:

If the series is of the form ,

if |r|<1, then the geometric series converges to
if |r|≥1, then the geometric series diverges

Let’s see some examples to better understand.

First example (click here):


1. Reference the geometric series convergence test
         

2. Determine the value of r


3. Determine if the series converges or diverges

                                               The geometric series converges to \frac{5}{4}.

Next example (click here):


1. Reference the geometric series convergence test


2. Determine the value of r


3. Determine if the series converges or diverges

                                                       The geometric series diverges.

Last example (click here):


1. Reference the geometric series convergence test


2. Determine the value of r


3. Determine if the series converges or diverges

                                               The geometric series converges to 6.

As you can see, it is not too difficult to determine if a geometric series converges or not. After doing some practice problems, you’ll get the hang of it very quickly. For more help or practice on geometric series, check out Symbolab’s Practice. Next blog post, I’ll go over the convergence test for p-series.

Until next time,

Leah

Monday, March 25, 2019

Advanced Math Solutions - Matrix Rank Calculator, Matrices

In the last two blog posts, we talked about Row Echelon Form (REF) and Reduced Row Echelon Form (RREF). In this blog post, we will talk about matrix rank. Determining a matrix’s rank will involve using REF or RREF, so make sure to review those blog posts before continuing on.

The rank of matrix is the dimension of the vector space created by its columns or rows. It is important to note that column rank and row rank are the same thing. We will find the rank of the matrix, by using the row rank.

Another way to think of this is that the rank of a matrix is the number of linearly independent rows or columns. Linearly independent means that no rows or columns can be the combination of the other rows or columns.

For example:


Here, Row 2 is a combination of Row 1 and Row 3 (Row 1 + Row 3). Therefore the rows are not linearly independent.

In order to determine the rank of a matrix:
1. Put the matrix in REF or RREF
2. Count the number of non-zero rows 
Let’s see some examples. Please note that I won’t be going over how to put the matrices in REF or RREF.

First example (click here):

1. Put the matrix in REF or RREF
                                                                The matrix is in RREF.
2. Count the number of non-zero rows
                                      There are 3 non-zero rows. The rank of this matrix is 3.

Not so bad! Next example (click here):


1. Put the matrix in REF or RREF
                                                               The matrix is in REF.
2. Count the number of non-zero rows
                                       There are 3 non-zero rows. The rank of this matrix is 3.

Last example (click here):

1. Put the matrix in REF or RREF
                                                              The matrix is in RREF.
2. Count the number of non-zero rows
                                     There are 4 non-zero rows. The rank of this matrix is 4.

As you can see, finding the rank of a matrix is not hard. You just have to make sure you’ve mastered putting matrices in REF and RREF.

For more help or practice on this topic, check out Symbolab’s Practice.

Until next time,

Leah

Sunday, March 3, 2019

High School Math Solutions - Matrix Inverse Calculator, Matrices (Part 2)

In the last two blog posts, I talked about how to find the inverse of a matrix and how to calculate the determinant of the matrix. Please review these two blog posts before continuing, if you are not familiar with either topic.

As you saw in the inverse blog post, calculating the inverse of a matrix can require a lot of steps and some time. In this blog post, I will go over a shortcut for calculating the inverse of a 2x2 matrix.

Here are the steps for calculating the inverse of a 2x2 matrix, using the shortcut:

1. Calculate the determinant of matrix A
                       Reminder:


2. Reorganize matrix A


3. Multiply matrix A by \frac{1}{det(A)}

These steps can be summarized by this formula:


Not too difficult, right? Let’s see some examples.

First example (click here):


1. Calculate the determinant of the matrix


2. Reorganize the matrix

3. Multiple the matrix by \frac{1}{det(A)}


Next example (click here):


1. Calculate the determinant of the matrix


2. Reorganize the matrix  

3. Multiple the matrix by \frac{1}{det(A)}


Last example (click here):


1. Calculate the determinant of the matrix


2. Reorganize the matrix  

3. Multiple the matrix by \frac{1}{det(A)}


This shortcut will help make calculating the inverse of a 2x2 matrix easier. That concludes our blog post series on matrices! For more help or practice on this topic, check out Symbolab’s Practice.

Until next time,

Leah