Sunday, February 5, 2017

High School Math Solutions – Derivative Applications Calculator, Tangent Line

We learned in previous posts how to take the derivative of a function. Now, it’s time to see the applications of derivatives.

We use derivatives when we find the equation of a tangent line. A tangent line is a straight line that just touches the curve at a point (on the curve). Tangent lines can help us find the length of the curve and their slopes tell us what the curve looks like and where we can find maximum and minimums. When we take the derivative of the function of the curve at a particular point, we get the slope of the tangent line.



Let’s see how we can use taking the derivative to find the equation of a tangent line.

Steps to find the equation of a tangent line at a point:

1.  Find the tangent point

  • Plug in the value for x into the function to find the y coordinate 

2.  Compute the slope of the function

  • Take the derivative of the function

3.  Compute the slope of the function at the given x coordinate

  • Plug in the value for x into the derivative 

4.  Use the point-slope formula to find the equation of the tangent line

  • y-y_1=m(x-x_1) 
  • Get (x_1, y_1) from Step 1 and get m from Step 3

We’ll now go over some examples.

First example (click here):

                                      Find the tangent line of \f(x)=\sqrt{x^2+1}  at  x=-1

1. Find the tangent point

                                                  \f(-1)=\sqrt{(-1)^2+1}=\sqrt{2}

                                                                 (-1,\sqrt{2})

2. Compute the slope of the function

                                                  \f(x)=(x^2+1)^(\frac{1}{2})

                                        \f^' (x)=\frac{1}{2} (x^2+1)^(\frac{-1}{2})∙2x

                                                    \f^' (x)=\frac{x}{\sqrt{x^2+1}

3. Compute the slope of the function at the given x coordinate

                                         \f^' (-1)=\frac{-1}{\sqrt{(-1)^2+1}}=\frac{-1}{\sqrt{2}}

                                                             m=\frac{-1}{\sqrt{2}}

4. Use the point-slope formula to find the equation of the tangent line

                                                  (-1,\sqrt{2})            m=\frac{-1}{\sqrt{2}}

                                                       y-y_1=m(x-x_1)

                                                      y-\sqrt{2}=\frac{-1}{\sqrt{2}}(x-(-1))

                                                      y-\sqrt{2}=\frac{-1}{\sqrt{2}} x-\frac{1}{\sqrt{2}}

                                                        y=\frac{-1}{\sqrt{2}} x+\frac{1}{\sqrt{2}}

Next example (click here):

                                                 Find the tangent line of \f(x)=\frac{1}{x^2}   at (-1,1)
1. Find the tangent point

             We can skip this step because the tangent point is given

2. Compute the slope of the function

                                                                        \f(x)=x^(-2)

                                                                     \f^' (x)=-2x^(-3)

                                                                      \f^' (x)=\frac{-2}{x^3}

3. Compute the slope of the function at the x coordinate

                                                                  \f^' (-1)=\frac{-2}{(-1)^3} =2

                                                                               m=2

4. Use the point-slope formula to find the equation of the tangent line

                                                                   (-1,1)          m=2

                                                                      y-1=2(x-(-1))

                                                                           y=2x+3

Last example (click here):

                                             Find the tangent line of \f(x)=x^2+2x+3 at  x=2
1. Find the tangent point

                                                              \f(2)=2^2+2(2)+3=11

2. Compute the slope of the function

                                                                     \f^' (x)=2x+2

3. Compute the slope of the function at the x coordinate

                                                                 \f^' (2)=2(2)+2=6

                                                                           m=6

4. Use the point-slope formula to find the equation of the tangent line

                                                                  (2,11)        m=6

                                                                     y-11=6(x-2)

                                                                         y=6x-1

As you can see, finding the equation of a tangent line of a point on a curve is not too hard. As long as you’ve mastered computing derivatives and the steps to finding the equation of the tangent line, you will be able to solve these problems quick and easily. For more help or practice on this topic, check out Symbolab’s Practice.

Until next time,

Leah

3 comments:

  1. Wonderful blog! I am so glad that I found it. I also recommend you to have a glance at this web page.

    ReplyDelete
  2. This blog is totally about the math and according to me, this subject is the only subject which is related to the genius people but australian writings assignment writing service is the best option for all student. Your information is so wonderful and I like this kind of the stuff. I am waiting for more information about this stuff.

    ReplyDelete