Sunday, February 5, 2017

High School Math Solutions – Derivative Applications Calculator, Normal Lines

Last blog post, we talk about using derivatives to compute the tangent lines of functions at certain points. Another application of derivatives is finding the normal line of a function at a certain point.

A normal line is a line that is perpendicular to a tangent line. The slope of the normal line is the negative reciprocal of the slope of the tangent line.



The steps for finding the equation of a normal line is pretty simple, as long as you’ve mastered finding the equation of a tangent line.

Steps for finding the equation of a normal line:

1.  Find the normal point
  • The normal point is the same as the tangent point
2.  Compute the slope of the function at the x coordinate
  • Compute the derivative of the function at the x coordinate 
  • This is the slope of the tangent line
3.  Compute the slope of the perpendicular line at the x coordinate
  • The slope (m) is the negative reciprocal of the slope (m_1) of the tangent line 
  • m=\frac{-1}{m_1} 
4.  Use the point-slope formula to find the equation of the normal line
  • y-y_1=m(x-x_1)


Let’s see some examples.

First example (click here):

                                          Find the normal line of y=x^2-x-1 at x=2

1. Find the normal point

                                                       y=(2)^2-2-1=1

                                                                  (2,1)

2. Compute the slope of the function at the x coordinate

                                                              y^'=2x-1

                                                          y^'=2(2)-1=3

                                                               m_1=3

3. Compute the slope of the perpendicular line at the x coordinate

                                                             m=\frac{-1}{m_1}
                                                                m=\frac{-1}{3}

4. Use the point-slope formula to find the equation of the normal line

                                                      (2,1)       m=\frac{-1}{3}

                                                       y-y_1=m(x-x_1)

                                                          y-1=\frac{-1}{3}(x-2)

                                                           y=\frac{-1}{3} x+\frac{5}{3}

Next example (click here):

                                           Find the normal line of \f(x)=x^4+2e^x  at (0,2)

1. Find the normal point

      It is already given.

2. Compute the slope of the function at the x coordinate

                                                               \f^' (x)=4x^3+2e^x

                                                         \f^' (0)=4(0)^3+2e^0=2

                                                                        m_1=2

3. Compute the slope of the perpendicular line at the x coordinate

                                                                        m=\frac{-1}{2}

4. Use the point-slope formula to find the equation of the normal line

                                                                 (0,2)      m=\frac{-1}{2}

                                                                   y-2=\frac{-1}{2}(x-0)

                                                                     y=\frac{-1}{2} x+2

Last example (click here):

                                              Find the normal line of \f(x)=\frac{1}{x^2}   at x=-1

1. Find the normal point

                                                            \f(-1)=\frac{1}{(-1)^2 }=1

                                                                          (-1,1)

2. Compute the slope of the function at the x coordinate

                                                                  \f^' (x)=\frac{-2}{x^3}

                                                             \f^' (-1)=\frac{-2}{(-1)^3} =2

                                                                        m_1=2

3. Compute the slope of the perpendicular line at the x coordinate

                                                                        m=\frac{-1}{2}

4. Use point-slope formula to find the equation of the normal line

                                                                (-1,1)     m=\frac{-1}{2}

                                                                y-1=\frac{-1}{2}(x-(-1))

                                                                  y=\frac{-1}{2} x+\frac{1}{2}

Finding the equation of a normal line is very similar to finding the equation of a tangent line. Since the steps are similar, make sure you don’t confuse and mix up the definitions of a tangent line and a normal line. For more practice and help with normal lines, check out Symbolab’s Practice.

Until next time,

Leah

7 comments:

  1. The topic of the derivation is one of the difficult tasks and most students did not understand this subject. The reason is that students did not know the basic rules of the derivation and this is the main reason that students did not learn this subject with writing service. This is really so cool information about the derivation.

    ReplyDelete
  2. Awesome blog. I would love to see true life prepared to walk, so please share more informative updates. Great work keeps it up. 70-535 exam dump

    ReplyDelete
  3. Arithmetic An esteem or qualities which, when substituted for a variable in a condition, make the condition genuine. The subordinate of an element of a genuine variable measures the affectability to change of the capacity esteem yield an incentive concerning an adjustment in its contention input esteem. Buy Movie Jackets

    ReplyDelete
  4. The incline of a line portrays the heading of a line. To discover the slant, you isolate the distinction of the y-directions of 2 focuses on a line by the distinction of the x-directions of those same 2 focuses. http://www.escape-advertising.com/

    ReplyDelete
  5. Now I can say Amazing.
    I was looking such information that can solve my problem like recently I was recently looking for speed my android device and research it, Finally, I got phone cleaner app app that is why I am suggesting you for check it once.

    ReplyDelete
  6. The best and most important thing is to keep in mind that great and very relevant information is found on various pages, and that where the energy and will to keep browsing come from. I like what I see as I find it very informative. When you aren't sure where to find the most reliable CV writing help in Kenya, we are the best choice. We always deliver the best assistance, thus giving clients the chance to keep having the chance to find the best jobs.

    ReplyDelete