Tuesday, November 29, 2016

High School Math Solutions – Inequalities Calculator, Logarithmic Inequalities

Last post, we talked about radical inequalities. In this post, we will talk about how to solve logarithmic inequalities. We’ll see logarithmic inequalities in forms such as \log_b(f(x))<a or \ln(⁡f(x))<a. In order to solve these inequalities, the goal will be to isolate the variable, just as in any inequality, and we will do this by getting rid of the log function. Let’s dive in and see how to solve logarithmic inequalities.

Steps to solve logarithmic inequalities:
1. Use algebraic manipulation to move anything that is not in the logarithmic expression to one side
2. Combine logarithmic expressions
3. Isolate the variable by getting rid of the logarithmic expression
             Ex:    \log_b⁡(f(x))<a

b^(\log_b⁡(f(x))) <b^a

f(x)<b^a

Ex: \ln(f(x))<a

\ln⁡(f(x))<\ln⁡(e^a )

f(x)<e^a
4. Solve inequality
5. Get the range for the expression in the original log function
             Ex:  \log_b⁡(f(x))
Range: f(x)>0
6. Combine ranges

Let’s do an example step by step now.

First example (click here):

                                            \log_4⁡(x+3)-\log_4⁡(x+2)\ge\frac{3}{2}

Step 1: Use algebraic manipulation to move anything that is not in the logarithmic expression to one side

There’s nothing to move, so we can skip this step.

Step 2: Combine logarithmic expressions

                                            \log_4⁡(x+3)-\log_4⁡(x+2)\ge\frac{3}{2}

                                                      \log_4⁡(\frac{x+3}{x+2})≥\frac{3}{2}


Step 3: Isolate the variable by getting rid of the logarithmic expression

                                                 \log_4⁡(\frac{x+3}{x+2})≥\frac{3}{2}

                                                4^(\log_4⁡(\frac{x+3}{x+2})) ≥4^(\frac{3}{2})

                                                         \frac{x+3}{x+2}≥8

Step 4: Solve inequality

                                                          \frac{x+3}{x+2}≥8

We can see that this is now a rational inequality. We won’t solve this step by step; I will show the answer after solving this inequality. If you are struggling with solving this inequality, visit the blog post on rational inequalities.

                                                             -2<x≤\frac{-13}{7}

Step 5: Get the range for the expression in the original log function

                                                   \log_4⁡(x+3)-\log_4⁡(x+2)\ge\frac{3}{2}

                                                       x+3>0              x+2>0

                                                       x>-3              x>-2

Step 6: Combine ranges

                                                    -2<x≤\frac{-13}{7},    x>-2,    x>-3

                                                              -2<x≤\frac{-13}{7}

That wasn’t too bad! Let’s see some more examples.


Second example (click here):



Last example (click here):




Solving logarithmic inequalities is not too difficult. Just remember to get the ranges inside the logarithmic expressions and to double check your work. For more help and practice on this topic visit Symbolab’s  practice.

Until next time,

Leah


15 comments:

  1. Lol, no doubt math is really a tough subject for many people and in high school, it becomes tougher, here is an advice keep practicing and you will do better.

    ReplyDelete
  2. This took me to my school days. Sites like this are really good. Thanks

    UAE Company Registration

    ReplyDelete
  3. You need to examine this site for some info or ideas on how to write good compare and contrast essay. This could be really useful for your future

    ReplyDelete
  4. This is a wonderful article. I would like to suggest you that please keep on sharing such type of information with us. I really found it to much informative. It is what i was searching from many days piknu

    ReplyDelete
  5. Take me back to the mountainside. Under the northern lights, chasing after the stars When we are full of life and the night is calm, there is no fear like five nights at freddy's fnaf

    ReplyDelete
  6. Logarithms and exponential are inverse operations. In other words, one operation undoes the other. For example, 102 = 100 and log 100 = 2. Also, 10 log x = x. Note: log is base 10. Professional Essay Writers Online - essaytigers

    ReplyDelete
  7. This Is Really Great Work. Thank You For Sharing Such A Good And Useful Information Here In The Blog slipcovers neos overshoes canada

    ReplyDelete
  8. We are usually available 24/7 and our fast essay writing service team can be contacted and also seek our pay for term papers at any time.

    ReplyDelete
  9. Very informative and helpful at the same time, appreciated the knowledge you shared with others, the content is lit,looking for some more informative content to come, keep up the good work, keep spreading knowledge, thank you!
    Alex Roe The 5th Wave

    ReplyDelete
  10. thank you.
    คาสิโนออนไลน์ที่น่าเชื่อถือและมีความเป็นมืออาชีพที่สุดในตอนนี้
    โปรโมชั่นGclub ของทางทีมงานตอนนี้แจกฟรีโบนัส 50%
    เพียงแค่คุณสมัคร สล็อตออนไลน์ กับทางทีมงานของเราเพียงเท่านั้น
    ร่วมมาเป็นส่วนหนึ่งกับเว็บไซต์คาสิโนออนไลน์ของเราได้เลยค่ะ
    สมัครสล็อตออนไลน์ >>> Goldenslot
    สนใจร่วมสนุกกับ คาสิโนออนไลน์ คลิ๊กได้เลย
    มีทั้งคาสิโนออนไลน์ หวยออนไลน์ ฟุตบอลออนไลน์ สล็อตออนไลน์ และอื่นๆอีกมากมาย

    ReplyDelete
  11. I am a website designer and developer from Australia. I have deep interests in Website design, development, marketing, math and astrophysics in-spite of the fact that I graduated as a software developer.

    ReplyDelete
  12. Great Blog with useful information. student Faces many problems while doing Assignment. Solve student Academic Problem.
    cheap assignment help
    cheap assignment help Australia

    ReplyDelete
  13. This Is Really Great Work. Thank You For Sharing Such A Good And Useful Information Here In The Blog

    Trademark registration service dubai

    ReplyDelete